flow - in this case flow through porous sediments and diffusion in the turbulent benthic boundary layer.

Recent Contributions to Fluid Mechanics. Edited by W. Haase. Springer, 1982.

 338 pp. DM58, \$23.00.This volume is dedicated to Professor Dr.-Ing. Alfred Walz in honour of his 75th birthday, and consists of 34 papers (by 56 authors). There is one short survey paper by Bradshaw on shear-layer studies and then very brief papers, largely accounts of recent research by the authors. It is a pity that there is no article on the life and achievements of Professor Walz or much reference to his work in the papers.

Three-Dimensional Turbulent Boundary Layers. Edited by H. H. Fernholz and E. Krause. Springer, 1982.389 pp. DM88, $\$ 36.70$.

This is a collection of papers given at the IUTAM symposium on specific experiments and computations on three-dimensional turbulent boundary layers on aerofoils, ships, in turbomachinery, over bluff bodies, and through shock waves. There is no review paper, although there is a summary of the interesting final discussion of the conference, which ought to be read by those doing research on this subject.

Hydrodynamics of Semi-Enclosed Seas. Edited by J. C. J. Ninoul. Elsevier, 1982. 555 pp .
This volume represents the proceedings of the 13th International Liège Colloquium on Ocean Hydrodynamics. As with its predecessors, it presents a wide range of papers from many countries (27 papers, at least 10 countries), and on many subjects, ranging from detailed observational work to numerical simulations. The photographic reproduction of typescript is of a high standard throughout.

CORRIGENDUM

An amplitude-evolution equation for linearly unstable modes in stratified shear flows

by L. Engevik

Journal of Fluid Mechanics, vol. 117 (1982), pp. 457-471
Equation (2.7) should read $\left(U-c_{\mathrm{s}}\right) \rho_{1}-\mathrm{i} \mu\left(\partial \rho_{1} / \partial \tau\right)=\bar{\rho}^{\prime} \Phi_{1}$, which yields the same expression for ρ_{s} as before. However, $\rho_{12}=\left(\bar{\rho}^{\prime} \phi_{12}+\mathrm{i} \rho_{\mathrm{s}}\right) /\left(U-c_{\mathrm{s}}\right)$, and therefore $\rho_{201}=\left(\bar{\rho}^{\prime} \phi_{\mathrm{s}}^{2} /(U-c \mathrm{~s})^{2}\right)^{\prime}$, where we have used the fact that ϕ_{s} is real - see appendix B . Also (2.8) should have a term $-\frac{1}{2} \mu \partial \rho_{2} / \partial \tau$ on its left-hand side, but this does not affect the expression for ρ_{21}. Since $\rho_{201} \neq 0$, there will be an additional contribution to both a_{22} in $\S 3$ and C_{2} in $\S 4$. The contribution to a_{22} is found to be negative, but so small that it will have no effect on figure 3. In $\S 4$ it is found that $C_{2} \sim-\frac{8}{3} \alpha_{s}^{3}$ when $\alpha_{s} \rightarrow 0$, including this additional contribution. Therefore, in order to find the nonlinear term in (4.13), we have to carry through the calculation to order α_{s}^{4}. The nonlinear term in (4.13) is found to be $-2 \epsilon^{2} \alpha_{\mathrm{s}}^{4} A^{2} A^{*}$.

